One end of a metal spring is attached to a wall, and the other to a mass which can move horizontally. Let $x(t)$ be the position of the mass at time t, so that

- $x<0$ when the spring is compressed,
- $x>0$ when the spring is stretched, and
- $x=0$ when the spring is at its equilibrium length.

When the mass is moved from equilibrium and then let go, its position satisfies the differential equation

$$
x^{\prime \prime}=-k x
$$

where k is a positive constant.
(1) Why is this a reasonable model? Does this make sense, based on your experience with springs?

Solution: The differential equation is saying that the spring exerts a force which opposes the displacement of the mass. I.e. if it is compressed, it will push, and if it is stretched, it will pull.
(2) Suppose that $k=9$. Find a function of the form $x(t)=\sin (\omega t)$ or $x(t)=\cos (\omega t)$ which satisfies the differential equation, for some constant ω. (For a general value of k, what must ω be?)

Solution: Plug $\sin (\omega t)$ into the left side

$$
(\sin (\omega t))^{\prime \prime}=(\omega \cos (\omega t))^{\prime}=-\omega^{2} \sin (\omega t)
$$

Therefore, $x(t)=\sin (3 t)$ is a solution. By similar reasoning, so is $x(t)=\cos (3 t)$. In fact, any function of the form

$$
x(t)=A \sin (3 t)+B \cos (3 t)
$$

is a solution.
(3) Back to the case of $k=9$. Suppose that the mass oscillates between $x=2$ and $x=-2$, and $x(0)=2$. Find $x(t)$.

Solution: The mass oscillates between -2 and 2, so it has amplitude 2 . $x(0)=2$ means that at $t=0$, it is at its maximum value: therefore, it is a cosine curve. Since $k=9$, it has frequency 3 . So $x(t)=2 \cos (3 t)$.
(4) What is $x(t)$ if the mass oscillates between $x=2$ and $x=-2, x(0)=1$, and $x^{\prime}(0)$ is negative?

Solution: Again, we have amplitude 2 and frequency 3, but the fact that $x(0)=1$ means that we have to shift our cosine curve by some phase P. That is,

$$
x(t)=2 \cos (3(t+P))
$$

for some P. Simply plugging in $t=0$ and setting it equal to the initial condition allows us to find the phase.
$1=x(0)=2 \cos (3(0+P)) \Longrightarrow \cos (3 P)=1 / 2 \Longrightarrow 3 P=\pi / 3 \Longrightarrow P=\pi / 9$
Therefore, plugging in $P=\pi / 9, x(t)=2 \cos (3(t+\pi / 9))$, or $x(t)=2 \cos (3 t+\pi / 3)$. The fact that $x^{\prime}(0)$ is negative allowed us to see that the graph of cosine should be shifted to the left, instead of to the right.
(5) (Hard) Suppose that the mass oscillates between $x=2$ and $x=-2, x(0)=1.2$, and $x^{\prime}(0)$ is negative. Calculate $x\left(\frac{\pi}{6}\right)$.

Solution: We use the same approach

$$
\begin{aligned}
& 1.2=x(0)=2 \cos (3 P) \Longrightarrow \cos (3 P)=0.6 \\
& \Longrightarrow 3 P=\arccos (0.6) \Longrightarrow P=\frac{\arccos (0.6)}{3}
\end{aligned}
$$

Thus, $x(t)=2 \cos \left(3\left(t+\frac{\arccos (0.6)}{3}\right)\right)=2 \cos (3 t+\arccos (0.6))$. Plugging in $t=$ $\pi / 6$,

$$
x\left(\frac{\pi}{6}\right)=2 \cos \left(\frac{\pi}{2}+\arccos (0.6)\right)
$$

For any $\theta, \cos \left(\frac{\pi}{2}+\theta\right)=\sin (\theta)$, and so the above is equal to $2 \sin (\arccos (0.6))$. One can evaluate $\sin (\arccos (0.6))$ by looking at a right triangle with hypotenuse 1 and one sidelength of $0.6 . \arccos (0.6)$ is the angle adjacent to the 0.6 side, and therefore sine of it is the length of the other side. By the Pythagorean theorem, that's $\sqrt{1^{2}-0.6^{2}}=\sqrt{1-0.36}=\sqrt{0.64}=0.8$. So $\sin (\arccos (0.6))=0.8$.

Therefore, $x\left(\frac{\pi}{6}\right)=1.6$.

